Sec. 5.3 The Logarithmic Function

Common Log Function – $f(x) = \log x$ if and only if $x = 10^y$

The **domain** of log x is all positive numbers. Its **range** is all real numbers. The log function grows very rapidly for 0 < x < 1 and very slowly for x > 1. It has a vertical asymptote at x = 0 and never touches the *y*-axis.

The Graphs of Inverse Functions $y = \log x$ and $y = 10^x$

		(1,10)	y = x	
Exponential				
fu	ınction	y = 10×		
X	y = 10 ^x	V = 10		
-2	0.01	and the second		
-1	0.1	and the same of th		
0	1	1 marine		
1	10	$(0,1) y = \log x$	(10,1)	
2	100		•	
3	1000	(-1,0.1) (1,0)		
		(0.1,-1)		

Log function						
X	$y = \log x$					
0.01	-2					
0.1	-1					
1	0					
10	1					
100	2					
1000	3					

Natural Log Function: $y = \ln x$ if and only if $x = e^y$

Like the common log, the natural log is only defined for x > 0 and has a vertical asymptote at x = 0. The graph is slowly increasing and concave down. It also passes through (1, 0).

The Natural Logarithm and Its Inverse

The functions $y = \ln x$ and $y = e^x$ are inverses of one another. Notice how they are mirror images of one another through the line y = x.

Properties of Log Functions $f(x) = \log_a x$:

1.	The domain is	the set of pos	sitive real i	numbers and the	e range is all real	4=109=X
	numbers.	a =,	a di sasa			9

4. A log function is decreasing if
$$0 < a < 1$$
 and increasing if $a > 1$.

5. The graph of f contains the points
$$(1, 0)$$
, $(a, 1)$, and $(1/a, -1)$.

$$X=7$$
 $I=7$
 $(1,0)$
 $0=7$
 $(7,1)$

Ex. Graph $f(x) = \log(x + 2)$ by starting with the graph of $f(x) = \log x$. Determine the domain, the range, the vertical asymptote, and the x-intercept.

domain: X>2 range: all reals UA: X=-Z X-int: (-1,0)

Asymptotes and Limit Notation

Let y = f(x) be a function and let a be a finite number.

• The graph of f has a **horizontal asymptote** of y = a if

$$\lim_{x \to \infty} f(x) = a \quad \text{or} \quad \lim_{x \to -\infty} f(x) = a \quad \text{or both.}$$

• The graph of f has a **vertical asymptote** of x = a if

$$\lim_{x \to a^+} f(x) = \infty \text{ or } \lim_{x \to a^+} f(x) = -\infty \text{ or } \lim_{x \to a^-} f(x) = \infty \text{ or } \lim_{x \to a^-} f(x) = -\infty.$$

Ex. Find: a)
$$\lim_{x\to 0^+} \log x$$

b)
$$\lim \log(x+2)$$

c)
$$\lim_{x\to\infty} x$$

d)
$$\lim_{x\to\infty} 10^{-3}$$

Ex: The sound intensity of a refrigerator motor is 10^{-11} watts/cm². A typical school cafeteria has sound intensity of 10^{-8} watts/cm². How many orders of magnitude more intense is the sound of the cafeteria?

Noise Level in Decibels = $10\log\left(\frac{I}{I_0}\right)$ where I represents the sound's intensity and is compared to the intensity of a benchmark sound I_0 . The intensity of I_0 is defined as 10^{-16} watts/cm², roughly the lowest intensity audible to humans.

Ex: What is the noise level (in dB) of the refrigerator in the previous example?

=
$$10 \log \left(\frac{10^{-11}}{10^{-10}} \right)$$
 = 10.5
= $10 \log 10^{5}$ = $50 dB$

Ex: If a sound doubles in intensity, by how many units does its decibel rating increase?

Ex: Loud music can measure 110 dB whereas normal conversation measures 50 dB. How many times more intense is loud music than normal conversation?

10
$$\log \left(\frac{Im}{I_0}\right) = 110$$
 10 $\log \left(\frac{Ie}{I_0}\right) = 50$
 $\log \left(\frac{Im}{I_0}\right) = 11$ 10 $\log \left(\frac{Ie}{I_0}\right) = 5$
 $\log \left(\frac{Im}{I_0}\right) = 11$ 10 $\log \left(\frac{Ie}{I_0}\right) = 5$
 $\log \left(\frac{Im}{I_0}\right) = 11$ 10 $\log \left(\frac{Ie}{I_0}\right) = 5$
 $\log \left(\frac{Im}{I_0}\right) = 10$ 10 $\log \left(\frac{Ie}{I_0}\right) = 5$
 $\log \left(\frac{Im}{I_0}\right) = 10$ 10 $\log \left(\frac{Ie}{I_0}\right) = 10$
 $\log \left(\frac{Im}{I_0}\right) = 10$
 $\log \left(\frac{I$

HW: pg 203-205, #1-9,11,12,19,20,22-25,40 (#25—Intensity instead of Loudness)